The Molecular Accretion Flow in G10.6-0.4

نویسندگان

  • Peter K. Sollins
  • Paul T. P Ho
چکیده

We have observed the ultracompact Hii region G10.6-0.4 with the VLA in 23 GHz continuum and the NH3(3,3) inversion line. By analyzing the optical depth of the line as well as the kinematics, we have detected a flattened, rotating, molecular accretion flow. We detect the fact that the highest column density gas is more flattened, that is, distributed more narrowly, than the lower column density gas, and that there is some inclination of the rotation axis. The rotation is sub-Keplerian, and the molecular gas is not in a rotationally supported disk. We do not find a single massive (proto)star forming in a scaled up version of low mass star formation. Instead, our observations suggest a different mode of clustered massive star formation, in which the accretion flow flattens but does not form an accretion disk. Also in this mode of star formation the central object can be a group of massive stars rather than a single massive star. Subject headings: stars: formation — ISM: individual (G10.6-0.4) — Hii regions – accretion

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Infall in G10.6-0.4: Accretion Through an Ultracompact Hii Region

We present high resolution (0.12× 0.079) observations of the ultracompact Hii region G10.6-0.4 in 23 GHz radio continuum and the NH3(3,3) line. Our data show that the infall in the molecular material is largely spherical, and does not flatten into a molecular disk at radii as small as 0.03 pc. The spherical infall in the molecular gas matches in location and velocity the infall seen in the ioni...

متن کامل

Observations on the Formation of Massive Stars by Accretion

Observations of the H66α recombination line from the ionized gas in the cluster of newly formed massive stars, G10.6–0.4, show that most of the continuum emission derives from the dense gas in an ionized accretion flow that forms an ionized disk or torus around a group of stars in the center of the cluster. The inward motion observed in the accretion flow suggests that despite the equivalent lu...

متن کامل

A Simplified Solution for Advection Dominated Accretion Flows with Outflow

The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...

متن کامل

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005